Therapeutic effect of Active Hexose-Correlated Compound (AHCC) combined with CpG-ODN (oligodeoxynucleotide) in B16 melanoma murine model

Rosa Mistica Ignacio a,1, Cheol-Su Kim b,1, Young-Do Kim b, Hak-Min Lee b, Xu-Feng Qi d,*, Soo-Ki Kim b,c,*

a Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, Republic of Korea
b Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, Republic of Korea
1 Department of Genomic Cohort, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, Republic of Korea
c Key Laboratory for Regenerative Medicine of Ministry of Education and Department of Developmental and Regenerative Biology, Ji Nan University, School of Life Science and Technology, Guangzhou, People’s Republic of China

d Corresponding authors at: Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju 220-701, Republic of Korea. Tel.: +82 033 732 4446 (S.-K. Kim).

E-mail addresses: qixufeng@jnu.edu.cn (X.-F. Qi),kim6@yonsei.ac.kr (S.-K. Kim).

Contributed equally to the work and should be considered first authors.

A R T I C L E I N F O

Article history:
Received 23 January 2015
Received in revised form 13 May 2015
Accepted 2 June 2015
Available online xxxx

Keywords:
Cytokine
Immune response
Oxidative stress
Redox balance
Tumor immunity

A B S T R A C T

While Active Hexose Correlated Compound (AHCC) and CpG oligodeoxynucleotide (ODN) are separately known to modulate oxidative stress and immune responses in cancer patients, the combined effect of these two compounds is unknown. To clarify this, we investigated whether AHCC plus KSK-CpG ODN would be therapeutic in B16 melanoma mouse model, if so, and how in reduction–oxidation (redox) balance and cytokines network. We found that treatment groups (AHCC only, KSK-CpG ODN only and AHCC/KSK-CpG ODN) markedly reduced (p < 0.001) tumor size when compared to the positive control (PC) group. The total white blood cell (WBC) of AHCC only and KSK-CpG ODN only-treated groups showed significant lower counts than that of PC group. Next, the production of nitric oxide (NO) was significantly increased (p < 0.01) in AHCC/KSK-CpG ODN group compared to the PC group. Further, the redox balance was improved in AHCC/KSK-CpG ODN group through significantly low (p < 0.001) reactive oxygen species (ROS) production and significantly high (p < 0.05) glutathione peroxidase (GPx) activity compared to the PC group. Finally, AHCC/KSK-CpG ODN (p < 0.01) and KSK-CpG ODN (p < 0.001)-treated groups augmented tumor immune surveillance as shown by significantly increased level of anti-inflammatory cytokine (IL-10) and significantly decreased (p < 0.05) level of pro-tumorigenic IL-6 of AHCC/KSK-CpG ODN treated group as compared to the PC group. Collectively, our study indicates therapeutic effect of Active Hexose-Correlated Compound (AHCC) combined with KSK-CpG ODN in B16 melanoma murine model via balancing redox and cytokines network.

1. Introduction

The annual report on the status of cancer in the United States shows that death rates continued to increase from 2000 through 2009 for melanoma of the skin and for the other types of cancers such as liver, pancreas and uterus [1]. Report showed that from 2001 to present, cancer is the leading cause of mortality in South Korea [2]. Continual rise on the number of cancer mortality underscore the need for additional prevention efforts and demands for the need to develop a more effective chemotherapeutic drugs.

While a wide array of anticancer drugs has been used, currently, these have shown to exhibit side effect such as normal tissue damage owing to the lack of specificity against cancer cells [3]. Thus, the medical research is in need of immunotherapies, which are capable of protecting and boosting the activity of normal cells such as the immune cells to fight against the cancer cells.

Of such potential candidates, as most well-known of the edible fungi family, *Lentinus edodes* has been reported to be effective towards hyperlipidemia [4], obesity [5] and cancer [6]. Active hexose correlated-compound (AHCC) is an extract obtained from *L. edodes* of Basidiomycetes family that is commercially available in Japan as a supplement for cancer patients who are undergoing chemotherapy. AHCC has been proven to stimulate cytokines (IL-2, IL-6, IL-12 and TNF-α) [7] and boost the immune system as an immunomodulator [8–10]. In addition, supplementation of AHCC showed various positive effects against cancer, such as...
decreased tumor formation [11] and increased immune response [8,10]. Furthermore, AHCC-treated primary cultured rat hepatocytes have shown an increased value of nitric oxide (NO) production, an indicator for macrophage activity [12], while treatment of AHCC in C57BL/6 murine melanoma models have shown an increase in Ag-specific activation, such as CD4+/CD8+ and IFN-γ values [11]. Aside from immune boosting activity, reactive oxygen species (ROS) scavenging effect in vitro was reported in breast cancer cell line [13]. However, ROS scavenging effect in vivo is unknown. CpG oligodeoxynucleotide (ODN) has been well known to induce tumor regression by activating innate immunity and serving as immunologic adjuvant for established cancer immunotherapy [14]. Our novel designed KSK-Cpg ODN is an active cancer immunotherapeutic agent against highly malignant tumor challenged model [15,16]. While AHCC and CpG ODN are separately known to modulate oxidative stress and immune responses in cancer patients, the combined effect of these two compounds is unknown. To clarify this, we investigated whether AHCC plus KSK-CpG ODN would be effective in B16 melanoma mouse model, if so, how in redox balance and cytokines network.

2. Materials and methods

2.1. Materials

Fetal bovine serum (FBS) and Roswell Park Memorial Institute (RPMI) 1640 medium were obtained from Hyclone Laboratories Incorporated (South Logan, UT). The antibiotic–antimycotic was obtained from Gibco Invitrogen Corporation (Auckland, NZ). The B16-F10 melanoma cell line was obtained from the Korean Cell Line Bank (Seoul, Korea). AHCC (Lot No. E26-0312-2) was a donation from KCF Korea (Korea) after purity checked and was dissolved in deionized distilled water with a final concentration of 100 mg/ml. The component of the freeze-dried AHCC extract was already checked and comprised mostly of oligosaccharides, comprising around 70% of carbohydrates, of which 28% is alpha-1, 4-glucan type [17]. Thus, the purity of AHCC is at least more than 99%. The LPS contamination of AHCC was negligible as previously reported [17]. KSK-CpG ODN was provided by MWG-Biotech AG (Ebersberg, Germany) and contained <0.1 EU/ml of endoxin as determined by the Limulus assay by Bio-Whittaker (Walkersville, MD, USA) and the fluorescent probe, 2,7-dichlorodihydrofluorescein diacetate (H2DCF-DA) was acquired from Sigma Chemical (Ebersberg, Germany) and contained <0.1 EU/ml of endoxin as determined by the Limulus assay by Bio-Whittaker (Walkersville, MD, USA) and the fluorescent probe, 2,7-dichlorodihydrofluorescein diacetate (H2DCF-DA) was acquired from Sigma Chemical Corporation (St. Louis, MO, USA). Glutathione peroxidase (GPx) activity assay kit was obtained from Biovision Incorporated (Milpitas, CA, USA). Griess reagent was purchased from Promega Corporation (Fitchburg, WI, USA). IL-1β, IL-6, IL-10, IL-12 (p70), IFN-γ, and TNF-α multiplex kit was purchased from Bio-Rad (San Diego, CA, USA).

2.2. Cell culture

B16-F10 melanoma cell was maintained in the RPMI 1640 medium supplemented with 10% FBS and 1% Antibiotic–Antimycotic in a humidified incubator with 5% CO2 and 37 °C incubator.

2.3. Maintenance of animals and inoculation of B16-F10 melanoma cell

Seven-week-old female C57BL/6 mice, weighing 18–20 g, obtained from Orient Bio Inc. (Seongnam, South Korea) were maintained in a pathogen-free condition at 22 ± 2 °C and 40–60% humidity under a 12 h:12 h light dark cycle and fed with standard commercial diet. Animals were inoculated subcutaneously with 1 × 10^5 viable B16-F10 melanoma cells. Sizes of the tumor were measured from 7 days after the inoculation. The animal use and care protocol for this animal experiment was approved by the Institutional Animal Care and Use Committee (IACUC), Yonsei University Wonju Campus.

2.4. Growth and supplementation of AHCC/KSK-CpG ODN

One week after B16-F10 melanoma cell inoculation (Day 0), mice were observed to develop tumors. Mice were randomly divided into four groups: AHCC/KSK-CpG ODN group was supplemented with AHCC and KSK-CpG ODN; AHCC group was given AHCC alone; KSK-CpG ODN group was given KSK-CpG ODN alone, while the positive control group (PC) did not receive the AHCC or KSK-CpG ODN. In this study, we also added a normal group (NC) which was not inoculated with B16-F10 melanoma cell and did not receive the AHCC or KSK-CpG ODN treatment. Thereafter, the treatment with AHCC was initiated followed by intraperitoneal (i.p) injection of KSK-CpG ODN (Day 1). Briefly, AHCC was dissolved in deionized distilled water with a final concentration of 100 mg/ml. The dosage used in this study was optimized according to the individual weight of the mouse. AHCC was given daily by oral administration with a final volume of 100 μL per mouse. While the KSK-CpG ODN group was injected i.p at a final concentration of 200 μg/ml with a final volume of 100 μL per mouse twice a week. Used KSK-CpG ODN has this following sequence (5’-TCGT CGTTTTTCGTCGTCTTGTTT-3’). The treatment with AHCC and KSK-CpG ODN, alone or in combination was carried out for 2 weeks. Tumor measurements were taken 7 days and 14 days after the treatment using a digital caliper. The longest longitudinal dimension (length) and the greatest traverse dimension (width) were determined. The final tumor volume in mm³ is calculated by the formula: \(\frac{4}{3} \pi r^3 \) where \(r = (\text{length} + \text{width})/4 \) as described elsewhere [18]. Mice were sacrificed 2 weeks (Day 14) after the treatment of AHCC and KSK-CpG and blood samples were collected for further analysis.

2.5. Analysis of blood samples

Mice were sacrificed through inhalation of diethyl ether for 10 s. Thereafter, blood was collected from the retro-orbital plexus and immediately put in tubes coated with an anticoagulant. The blood was mixed with an automatic mixer for 5 min. Then, the total white blood cell (WBC) and their differential counts (neutrophil, lymphocytes, monocytes, eosinophil and basophil) were determined by an automatic blood analyzer (HEMAVEG HV950 FS, Drew Scientific Inc., Dallas, TX, USA). While other portions of the blood were collected and put in a commercially available red topped tubes (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) and were allowed to clot for 30 min at room temperature. The clot was removed by centrifugation at 14,000 rpm for 5 min in a refrigerated centrifuge. The resulting supernatant (serum) was used for further analysis such as ROS, NO, GPx, and cytokines.

2.6. Detection of reactive oxygen species generation

The generation of intracellular ROS was detected using fluorescent probe H2DCF-DA. Briefly, 50 μL serum was loaded with 10 μM of H2DCF-DA from a stock solution of DMSO. After 30 min of loading at 37 °C incubator protected from light, serum was centrifuged and washed with 1X PBS to remove extra H2DCF-DA. Finally, the intracellular ROS was measured at an excitation wavelength of 485 nm and an emission wavelength of 530 nm using a DTX-880 multimode microplate reader (Beckman Coulter Inc., Fullerton, CA, USA).

Please cite this article in press as: Ignacio RM et al. Therapeutic effect of Active Hexose-Correlated Compound (AHCC) combined with CpG-ODN (oligodeoxynucleotide) in B16 melanoma murine model. Cytokine (2015), http://dx.doi.org/10.1016/j.cyto.2015.06.002
2.7. Glutathione peroxidase activity assay

GPx activity in serum was measured for \(\text{H}_2\text{O}_2 \) scavenging capacity by GPx Activity Assay Kit according to the manufacturer’s instruction. Absorbance was determined at 340 nm by a DTX-880 multimode microplate reader (Beckman Coulter Inc., Fullerton, CA, USA).

2.8. Production of nitric oxide assay

The NO levels in serum were spectrophotometrically assessed using Griess reagent. The absorbance at 540 nm was measured and the NO concentration was determined using a calibration curve with sodium nitrite as a standard chemical.

2.9. Cytokine assay

Serum concentrations of selected cytokines, including IL-1\(\beta \), IL-6, IL-10, IL-12/70, IFN-\(\gamma \), and TNF-\(\alpha \) were analyzed. Briefly, serum samples were assessed using a Luminex Bead-Based Suspension Array System (Bio-Rad, San Diego, CA, USA) according to the manufacturer’s instructions. The plate was run on a Bio-Plex bead suspension array system by Luminex 200 Bio-Plex Instrument (Bio-Rad Hercules, CA, USA) and the raw fluorescence data were analyzed by the Bio-Plex Manager software using 5-parameter logistic method and xMAP technology.

2.10. Statistical analysis

Data values were expressed as mean ± SEM. The mean values among groups were analyzed and compared by one-way analysis of variance (ANOVA) followed by subsequent multiple comparison tests (Tukey), while for those experiments where the effects of more than one factor are considered, two-way ANOVA followed by Bonferroni posttest after confirming normal distribution was used with GraphPad Prism version 5.0 software packages (GraphPad Software, La Jolla, CA, USA). Differences were considered statistically significant at \(p < 0.05 \), \(p < 0.01 \) and \(p < 0.001 \).

3. Results

3.1. Body weight and tumor size

After 5 days of tumor inoculation, there was a loss of body weight among the groups, interpreted as immuno suppressed condition because of cancer progression. However, 14 days after the tumor inoculation, all groups showed regained body weight loss. Changes in body weight in each group are arranged in ascending order: NC < AHCC < AHCC/KSK-CpG ODN < KSK-CpG ODN < PC (Table 1). All groups showed similar tumor size after the first seven days of treatment. However, after 14 days of treatment, treated groups (AHCC, KSK-CpG ODN and AHCC/KSK-CpG ODN) showed significant reduced (\(p < 0.001 \)) size of tumor when compared to the profoundly increased PC (Table 2). The percentage of change in tumor size after 14 days of treatment are arranged in descending order: AHCC > AHCC/KSK-CpG ODN > KSK-CpG ODN > PC. Moreover, the change in size with respect to PC was also calculated, as shown in Table 2.

3.2. Hematological analysis

The total WBC of AHCC and KSK-CpG ODN treated groups showed significantly lower count than that of PC (Table 3). This may suggests that the WBC of AHCC and KSK-CpG ODN treated groups had already sensed the intruder, cancer cells, and rushed to the site of the tumor colonization.

3.3. Nitric oxide production

NO production was determined via measuring the concentration of nitrite in the serum. The AHCC/KSK-CpG ODN group showed a significant increase (\(p < 0.01 \)) in the production of nitric oxide compared to the PC group (Fig. 1).

3.4. ROS production and endogenous enzyme activity

\(\text{H}_2\text{DCFH-DA} \) was used as a reporter of intracellular ROS. The total ROS production in AHCC/KSK-CpG ODN-treated group was significantly lower (\(p < 0.001 \)) than that of the PC group. Furthermore, KSK-CpG ODN treated group alone showed a significant decrease in ROS (\(p < 0.01 \)) compared to the PC group (Fig. 2a). GPx provides protection against the damaging effect of ROS such as hydro peroxides. The activity of the endogenous enzyme GPx was significantly increased (\(p < 0.05 \)) in AHCC/KSK-CpG ODN group compared to the PC group (Fig. 2b).

3.5. Levels of pro-inflammatory and anti-inflammatory cytokines

The protein concentration of anti-inflammatory cytokine (IL-10) was significantly increased in KSK-CpG ODN (\(p < 0.001 \)) and

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>NC</td>
</tr>
<tr>
<td>PC</td>
</tr>
<tr>
<td>AHCC</td>
</tr>
<tr>
<td>KSK-CpG ODN</td>
</tr>
<tr>
<td>AHCC/KSK-CpG ODN</td>
</tr>
</tbody>
</table>

Abbreviations: NC, normal control; PC, positive control; AHCC, active hexose correlated compound; KSK-CpG ODN, oligodeoxynucleotide. Data are mean ± SEM, \(n = 8 \). Bonferroni posttest \(p < 0.005 \) PC vs AHCC/KSK-CpG ODN after 14 days.

Please cite this article in press as: Ignacio RM et al. Therapeutic effect of Active Hexose-Correlated Compound (AHCC) combined with CpG-ODN (oligodeoxynucleotide) in B16 melanoma murine model. Cytokine (2015), http://dx.doi.org/10.1016/j.cyto.2015.06.002
AHCC/KSK-CpG ODN (\(p < 0.01\)) treated group as compared to the PC group (Fig. 3d). The level of pro-tumorigenic IL-6 in AHCC/KSK-CpG ODN treated group was significantly decreased (\(p < 0.05\)) as compared to the PC group (Fig. 3c). However, the levels of IL-1\(\beta\), TNF-\(\alpha\), IL-12p70 and IFN-\(\gamma\) showed no statistically significant changes compared to the control groups (NC, PC) (Fig. 3).

4. Discussion

Our study indicates positive effect of AHCC combined with KSK-CpG ODN in B16 melanoma murine model via balancing redox and cytokines network. First, to prove antitumor activity, we measured tumor size in each group. Oral administration of AHCC followed by intraperitoneal injection of KSK-CpG ODN significantly reduced tumor size (Table 2). This is consistent with the other groups receiving AHCC alone and KSK-CpG ODN alone when compared to the dramatic increase in tumor size of the PC group (Table 2). Our results are in agreement with previous report that treatment with AHCC delayed melanoma and lymphoma formation and reduced tumor size[11]. In line with this, our previous study showed that KSK-CpG ODN, new toll-like receptor (TLR) 9 agonist is able to block the lung metastasis of B16 melanoma[15]. Taken together, our results clearly indicate that combination therapy of AHCC plus immunological adjuvant, KSK-CpG ODN is effective in B16-F10 melanoma murine model. This is the first report on combination therapy of functional food plus toll-like receptor (TLR) 9 agonist in tumor model.

To delineate the molecular-cellular mechanism such as immunity and redox balance of combined treatment with AHCC plus KSK-CpG ODN in murine melanoma cancer model, we designed Table 3

Table 3

<table>
<thead>
<tr>
<th>WBC and members</th>
<th>NC</th>
<th>PC</th>
<th>AHCC</th>
<th>KSK-CpG ODN</th>
<th>AHCC/KSK-CpG ODN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total WBC, (\times 10^9/\text{L})</td>
<td>5.045 ± 1.436</td>
<td>4.338 ± 1.523</td>
<td>3.395 ± 1.737</td>
<td>3.592 ± 0.761</td>
<td>3.474 ± 0.789</td>
</tr>
<tr>
<td>Neutrophil, (\times 10^9/\text{L})</td>
<td>1.053 ± 0.597</td>
<td>1.125 ± 0.425</td>
<td>0.707 ± 0.295</td>
<td>0.887 ± 0.207</td>
<td>0.697 ± 0.139</td>
</tr>
<tr>
<td>Lymphocyte, (\times 10^9/\text{L})</td>
<td>2.93 ± 0.821</td>
<td>2.945 ± 0.946</td>
<td>2.404 ± 1.061</td>
<td>2.560 ± 0.583</td>
<td>2.641 ± 0.684</td>
</tr>
<tr>
<td>Monocyte, (\times 10^9/\text{L})</td>
<td>0.195 ± 0.120</td>
<td>0.164 ± 0.082</td>
<td>0.104 ± 0.021</td>
<td>0.127 ± 0.045</td>
<td>0.121 ± 0.054</td>
</tr>
<tr>
<td>Eosinophil, (\times 10^9/\text{L})</td>
<td>0.165 ± 0.186</td>
<td>0.081 ± 0.102</td>
<td>0.021 ± 0.021</td>
<td>0.014 ± 0.009</td>
<td>0.010 ± 0.010</td>
</tr>
<tr>
<td>Basophil, (\times 10^9/\text{L})</td>
<td>0.058 ± 0.082</td>
<td>0.034 ± 0.041</td>
<td>0.011 ± 0.012</td>
<td>0.004 ± 0.005</td>
<td>0.019 ± 0.003</td>
</tr>
</tbody>
</table>

Abbreviations: NC, normal control; PC, positive control; AHCC, active hexose correlated compound; KSK-CpG ODN, oligodeoxynucleotide. Data are mean ± SEM, \(n=8\).

* Nonparametric Tukey’s multiple comparison test \(p < 0.05\) versus PC.

** Nonparametric Tukey’s multiple comparison test \(p < 0.01\) versus PC.

AHCC/KSK-CpG ODN (\(p < 0.01\)) treated group as compared to the PC group (Fig. 3d). The level of pro-tumorigenic IL-6 in AHCC/KSK-CpG ODN treated group was significantly decreased (\(p < 0.05\)) as compared to the PC group (Fig. 3c). However, the levels of IL-1\(\beta\), TNF-\(\alpha\), IL-12p70 and IFN-\(\gamma\) showed no statistically significant changes compared to the control groups (NC, PC) (Fig. 3).

Fig. 1. The level of nitric oxide (NO) in melanoma mice orally administered with active hexose correlated compound AHCC/CpG for 14 days. The nitrite present in the mice serum was used as an indicator of NO production using the Griess reagents at indicated time point (10 min). The absorbance was determined at 540 nm using microplate reader. Positive control (PC) group showed lower NO production compared to the significantly higher NO production of AHCC/KSK-CpG ODN group. Values are mean ± SEM, \(n=8\). *\(p < 0.05\) vs. positive control.

Fig. 2. Effect of active hexose correlated compound AHCC/KSK-CpG ODN on ROS (a) and endogenous enzyme glutathione peroxidase activity (b). Mice sera were stained with H2DCF-DA to detect intracellular reactive oxygen species (ROS) production using a fluorometric microplate reader. Positive control (PC) had higher ROS production compared to the significantly lower ROS production of AHCC/KSK-CpG ODN group. Glutathione peroxidase (GPx) activity in mice serum was directly assayed and PC group showed lower activity, while the group treated with AHCC/KSK-CpG ODN showed increased activity. Values are mean ± SEM, \(n=8\). **\(p < 0.01\) and ***\(p < 0.001\) vs. positive control.

Please cite this article in press as: Ignacio RM et al. Therapeutic effect of Active Hexose-Correlated Compound (AHCC) combined with CpG-ODN (oligodeoxynucleotide) in B16 melanoma murine model. Cytokine (2015), http://dx.doi.org/10.1016/j.cyto.2015.06.002
the redox and immunologic assay. One of the hallmarks of cancer cells is highly-proliferating cell, in turn requiring high ROS concentration to meet this demand [19]. Low-level of ROS is crucial for signal transduction before their elimination. In this study, we measured ROS production and the endogenous antioxidant (GPx) activity. AHCC/KSK-CpG ODN group showed equilibrium between the ROS and glutathione peroxidase, an endogenous antioxidant. This is strongly supported by significant lower ROS production and higher activity of glutathione peroxidase. However, the positive control group showed the imbalance between pro-oxidant (ROS) and anti-oxidant, which might lead to oxidative stress. Furthermore, this imbalance between pro-oxidant/anti-oxidant favors the alteration and damage of molecules such as DNA, RNA, lipids and proteins hence leading to the mutations driving carcinogenesis [20]. Acharya and colleagues (2010) proposed that abnormal increased of ROS abolished the redox balance and promote tumor formation by initiating an aberrant induction of signaling networks that cause tumorigenesis [21]. In relation to this, positive group has higher ROS level and was shown to have dramatic increase of tumor size. By contrast, AHCC/KSK-CpG ODN group showed significantly lowest ROS production and highest GPx activity. Considering the reduced tumor size, our results suggest that AHCC/KSK-CpG ODN treatment would provide protection against melanoma through recovering redox balance. This has an important implication that our combined therapy with medicinal food plus TLR9 agonist would be synergistic in alleviating tumor or drug-induced oxidative stress, finally relieving the toxicity as well as increasing quality of life. However, this remains to be further verified.

Next, we sought to unveil the potential immune mechanism of synergistic treatment with AHCC/KSK-CpG ODN by measuring cytokine release and nitric oxide production. The development of
cancer is not solely influenced by the status of oxidative stress, but also inflammation. Cytokines are implicated to control various immune functions including cancer [22]. In contrast, some cytokines serve as a niche on premalignant cells, favoring their growth and survival, and others are pro-tumorigenic, which would contribute to maintaining the tumor-promoting inflammation [23,24]. In that context, to delineate the effect of AHCC/KSK-CpG ODN on cytokine network, we measured several cytokine concentrations using a multiplex-bead array system for the highest sensitivity and precision. Of note, the pro-tumorigenic cytokine IL-6 was significantly decreased in AHCC/KSK-CpG ODN group when compared to the positive control group. Cumulative studies showed that IL-6 is one of the best featured pro-tumorigenic cytokines, involved in cancer owing to its ability to activate the oncogenic transcription factors such as NF-

6

R.M. Ignacio et al. / Cytokine xxx (2015) xxx–xxx

5. Conclusion

Collectively, our study indicates therapeutic effect of Active Hexose-Correlated Compound (AHCC) combined with KSK-CpG ODN in B16 melanoma murine model via balancing redox and cytokines network.

Author disclosure statement

The authors declare no competing financial interests.

Acknowledgement

This work was supported by a grant from the National Research Foundation of Korea funded by the Korean Government (NRF-2012K1A2B1A03000595, NRF-2013R1A1A2012665).

References

